
Journal of the National Cancer Institute, Vol. 98, No. 17, September 6, 2006 ARTICLES 1215

                       Background:   To improve the discriminatory power of the 
Gail model for predicting absolute risk of invasive breast 
cancer, we previously developed a relative risk model that 
incorporated mammographic density (DENSITY) from data 
on white women in the Breast Cancer Detection Demonstra-
tion Project (BCDDP). That model also included the vari -
ables age at birth of fi rst live child (AGEFLB), number of 
aff ected mother or sisters (NUMREL), number of previous 
benign breast biopsy examinations (NBIOPS), and weight 
(WEIGHT). In this study, we developed the corresponding 
model for absolute risk.   Methods:   We combined the relative 
risk model with data on the distribution of the variables 
AGEFLB, NUMREL, NBIOPS, and WEIGHT from the 2000 
National Health Interview Survey, with data on the condi-
tional distribution of DENSITY given other risk factors in 
BCDDP, with breast cancer incidence rates from the Surveil-
lance, Epidemiology, and End Results program of the National 
Cancer Institute, and with national mortality rates. Confi -
dence intervals (CIs) accounted for variability of estimates of 
relative risks and of risk factor distributions. We compared 
the absolute 5-year risk projections from the new model with 
those from the Gail model on 1744 white women.   Results:   
Attributable risks of breast cancer associated with DENSITY, 
AGEFLB, NUMREL, NBIOPS, and WEIGHT were 0.779 
(95% CI = 0.733 to 0.819) and 0.747 (95% CI = 0.702 to 0.788) 
for women younger than 50 years and 50 years or older, 
respectively. The model predicted higher risks than the Gail 
model for women with a high percentage of dense breast area. 
However, the average risk projections from the new model in 
various age groups were similar to those from the Gail model, 
suggesting that the new model is well calibrated.   Conclusions:   
This new model for absolute invasive breast cancer risk in 
white women promises modest improvements in discrimina-
tory power compared with the Gail model but needs to be 
validated with independent data.   [J Natl Cancer Inst 2006;
98: 1215  –  26 ]   

  Gail et al.  ( 1 )  used data from the Breast Cancer Detection 
Demonstration Project (BCDDP) to develop a model for the ab-
solute risk of breast cancer for women in a given age interval. 
This model, known as the Gail model, included age at menarche 
(AGEMEN), age at birth of fi rst live child (AGEFLB), number of 
previous benign breast biopsy examinations (NBIOPS), and 
number of fi rst-degree relatives (mother or sisters) with breast 
cancer (NUMREL). We call these standard risk factors. This 
model was recalibrated to data from National Cancer Institute’s 
(NCI’s) Surveillance, Epidemiology, and End Results (SEER) 
program  ( 2 ) , and the resulting model, called Gail model 2, is 
available at  http://www.cancer.gov/bcrisktool/   . This model has 
been used to design prevention trials, such as the Breast Cancer 
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Prevention Trial  ( 3 ) , and to counsel women about their in dividual 
risks  ( 4 ) . Although the model accurately predicts the numbers of 
cancers observed in subsets of women defi ned by various combi-
nations of age and risk factors (i.e., it is well calibrated)  ( 2 , 5 ) , it 
has been criticized because the distribution of risks in women 
who develop breast cancer has considerable overlap with the dis-
tribution of risks in women who do not develop breast cancer  ( 5 ) . 
The corresponding low concordance statistic has been described 
as a lack of discriminatory power  ( 5 ) . 

 We investigated whether mammographic density could be 
used to improve the discriminatory power of the model because 
increased mammographic density has been associated with 
strongly increased breast cancer risk  ( 6  –  8 )  and with high attribut-
able risk  ( 6 ) . We defi ned the variable DENSITY in terms of the 
average percent dense area of the two breasts on craniocaudal 
mammograms. We previously obtained measurements of the 
variable DENSITY in 7251 women from the BCDDP and deter-
mined that the reader reliability of these measurements was suf-
fi cient to warrant their inclusion in risk models  ( 9 ) . 

 As a fi rst step toward developing a model of absolute risk that 
includes DENSITY, we developed a relative risk model (Chen J, 
Ayyagari R, Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: 
unpublished results). The technical challenge was to estimate 
 effi ciently the effects of standard risk factors, which were mea-
sured on large numbers of women, and the effects of DENSITY, 
which was measured only on subsets of the women for which all 
of the other risk factors had been measured (Chen J, Ayyagari R, 
Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: unpublished 
results). Chen et al. (unpublished results) examined several pos-
sible relative risk models. A parsimonious model that  captured the 
most important effects included AGEFLB, NBIOPS, NUMREL, 
DENSITY, and weight (WEIGHT). Unlike the original model 
of Gail et al.  ( 1 ) , this model did not include AGEMEN, an inter-
action between AGEFLB and NUMREL, or an interaction be-
tween NBIOPS and whether age equaled or exceeded 50 years 
because these terms were not statistically signifi cantly associated 
with breast cancer risk in the multivariable model. Chen et al. 
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(unpublished results) analyzed the concordance statistic from the 
new model and found increases in concordance ranging from 
0.01 to 0.09 in the seven 5-year age groups studied. It seemed 
worthwhile, therefore, to develop the corresponding model for 
absolute risk. 

 In this study, we developed a model to estimate absolute inva-
sive breast cancer risk that was based on age and on DENSITY, 
WEIGHT, AGEFLB, NBIOPS, and NUMREL. We also com-
pared estimates from this model of absolute risk, which included 
DENSITY, with those from Gail model 2  ( 2 ) . Calculations of the 
variance needed to put confi dence intervals (CIs) on the absolute 
risk projections are described in the  Appendix . 

  M ETHODS AND  D ATA  S OURCES  

  Strategy to Estimate Absolute Risk 

 The components  ( 1 )  needed to project absolute risk are the 
relative risk model, the baseline hazard rate for invasive breast 
cancer at age  t  [ h  1 ( t )], and the corresponding hazard of mortality 
from non – breast cancer causes [ h  2 ( t )]. We used estimates of  h  2 ( t ) 
from the National Center for Health Statistics for January 1, 
1996, through December 31, 2000  ( 10 ) . We obtained  h  1 ( t ) by 
multiplying SEER hazard rates  ( 11 )  from January 1, 1996, 
through December 31, 2000, for invasive breast cancer,   h  1 *( t ),  by 
[1  −  AR( t )], where AR( t ) is the attributable risk for the entire 
relative risk model at age  t . It is a technical challenge to estimate 
the attributable risk because the joint distribution of all the risk 
factors in the general population is not available. We, therefore, 
obtained an estimate of the joint distribution of age, WEIGHT, 
AGEFLB, NBIOPS, and NUMREL from the National Health 
 Interview Survey (NHIS) for 2000  ( 12 ) . We completed our model 
for the joint distribution of these factors with DENSITY by using 
BCDDP data to model the conditional distribution of DENSITY 

given age, WEIGHT, AGEFLB, NBIOPS, and NUMREL. From 
resulting estimates of the relative risk model (Chen J, Ayyagari R, 
Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: unpublished 
results),  h  1 ( t ), and  h  2 ( t ), we computed absolute risk from formu-
las 5 and 6 in Gail et al.  ( 1 ) .  

  Estimating the Relative Risk Function That Incorporates 
Mammographic Density 

 The study design of the BCDDP, sampling to obtain informa-
tion on factors in the Gail model, and sampling of data on mam-
mographic density have been reported previously  ( 9 )  (Chen J, 
Ayyagari R, Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: 
unpublished results). Chen et al. (unpublished results) described 
how to account for the patterns of missing data when estimating 
the relative risk function of these variables and how to calculate 
the variance of the relative risk function. In brief, the BCDDP 
recruited 284   780 women, including 243   221 white women, from 
January 1, 1973, through December 31, 1975, and followed the 
women with annual screening for up to 5 years ( Fig. 1 ). More 
than 99% of the women were between the ages of 35 and 74 
years at recruitment, with a median age of 50 years. The period 
of BCDDP from January 1, 1973, through December 31, 1979, 
was referred to as the screening phase of the study. At the end 
of the screening phase, follow-up was extended for all women 
who had developed breast cancer; all those who had a benign 
breast biopsy during the screening phase; all those who were rec-
ommended for biopsy examination during the screening phase 
but did not have it; and a subset of those remaining  “ normal ”  
women who had not had a breast cancer diagnosis, a breast bi-
opsy, or a recommendation for breast biopsy during the screening 
phase ( Fig. 1 ). Normal subjects were selected by frequency 
matching on age, date of entry into the BCDDP screening phase, 
race,  center, and length of participation in screening to women 

  Fig. 1.     Participation and mammo-
graphic density measurements in the 
Breast Cancer Detection Demonstra-
tion Project (BCDDP). MD refers to 
mammo  graphic density. Cases refer to 
women with breast cancer. Noncases 
refer to women without breast cancer, 
some of whom were selected as control 
subjects.    

Cases Controls
With MD 1235 1656 
Total 2852 3146 

 Cases Non-cases Cases Non-cases Cases Non-cases 
With MD 632 1279 209 465 439 2291 
Total 1305 19 505 435 7237 884 19 965 

BCDDP Screening Phase 
N=243,221 White Women 

Accrual begins 

Accrual ends 

Follow-up for incident
cases ends

1973

1975

1979

Subcohort Follow-up Phase 
1980

Recommended for Biopsy 
(Exhaustive) 

Normal*
(Sub-sample of 21,571 of the 208,205 normal women)

Benign Disease 
(Exhaustive) 

Follow-up Questionnaire 1986 
1988 

Analysis through 1995 1994 
1998 

* Age-matched to cases in the screening phase and to those with benign disease in screening phase 
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who developed breast cancer or who had a biopsy in the screen-
ing phase. Follow-up continued through December 31, 1998; we 
used follow-up data through December 31, 1995. We refer to the 
period from January 1, 1980, through December 31, 1995, as the 
follow-up phase of BCDDP and to the three groups of women 
(i.e., women who had biopsy examinations, women recom-
mended for a biopsy examination but who did not receive it, and 
normal women) as subcohorts.     

 To study the risk factors for breast cancer, a nested case –
  control study was conducted within the screening phase in 1979, 
and data were collected on standard risk factors, including age 
at menarche, age at birth of fi rst live child, number of breast bi-
opsy examinations, and number of fi rst-degree relatives (mother 
or sisters) with breast cancer ( Fig. 1 ). Women who had either 
invasive or in situ breast cancer were defi ned as case patients. 
Control subjects for this study were selected from those who did 
not have a breast cancer diagnosis, a breast biopsy, or a recom-
mendation for breast biopsy during the screening phase and 
were matched to case patients on age at entry in 5-year intervals, 
race, study center, 6-month calendar time of screening, and 
length of follow-up (at least as long as that of the case patient). 
Gail et al.  ( 1 )  used data on the four standard risk factors and age 
from the white women in this study to estimate relative odds 
parameters with a logistic regression model. These standard 
risk factors were available for most women in the follow-up 
phase. Of the 21   243 women in the benign biopsy subcohort, 
7773 women in the  recommended-for-biopsy subcohort, and 
21   629 women in the normal subcohort, we excluded 433, 101, 
and 780 women, respectively, who did not have data on WEIGHT 
and AGEFLB. There were no women with missing NBIOPS or 
NUMREL data, which were updated during the follow-up phase. 
We were able to obtain DENSITY measurements from mam-
mograms at baseline in the period from January 1, 1973, through 
December 31, 1975 for approximately half the case patients and 
control subjects in the screening phase. A nested case – control 
sample was selected from each subcohort in the follow-up phase, 
and an effort was made to retrieve screening-phase baseline 
mammographic images. DENSITY measurements were ob-
tained for approximately half of the case patients and control 
subjects in these nested case – control studies (Chen J, Ayyagari 
R, Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: unpub-
lished results) ( Fig. 1 ). 

 Chen et al. (unpublished results) used a logistic regression 
model to describe the odds ratios (ORs) of breast cancer for the 
screening-phase data and a piecewise exponential model to esti-
mate the corresponding hazard ratios for data from the follow-
up phase. We use the term relative risk to refer to the relative 
hazard obtained from follow-up phase data and the odds ratios 
from screening-phase data, which closely approximate the rela-
tive hazard (Chen J, Ayyagari R, Chatterjee N, Pee DY, Schairer 
C, Byrne C, et al.: unpublished results). Chen et al. developed 
 effi cient statistical methods to estimate the relative risk param-
eters by use of data from all subjects, including those without 
 DENSITY measurements, and they analyzed the screening-
phase data and the three follow-up subcohorts separately. Sum-
mary log relative risks were obtained from the four sets of log 
relative risk estimates by multivariate-weighted least squares, in 
which each component log relative risk vector was multiplied 
by the inverse of the corresponding covariance matrix and then 
multiplied by the inverse of the sum of the four covariance ma-
trix inverses. 

 The fi nal log relative risk model included main effects in fi ve 
continuous variables: age at birth of fi rst live child (AGEFLB), 
coded as 0, 1, 2, or 3 for ages younger than 20 years, 20 – 24 years, 
25 – 29 years or nulliparous, or older than 29 years, respectively; 
number of biopsies (NBIOPS), coded as 0, 1, or 2 for zero, one, 
or more than one biopsy examination, respectively, at the time 
the case patients and control subjects were interviewed; number 
of affected relatives (NUMREL), coded as 0, 1, or 2 for zero, 
one, or more than one sister or mother with breast cancer at the 
time the case patients and control subjects were interviewed; 
body weight (WEIGHT), coded as 0, 1, 2, 3, 4, or 5 for the weight 
ranges 100 or less, 101 – 125, 126 – 150, 151 – 175, 176 – 200, and 
more than 200 pounds at entry in BCDDP for case patients and 
control subjects in the screening phase and at the beginning of 
follow-up otherwise; and DENSITY, coded as 0, 1, 2, 3, or 4 for 
mammographic density measurements in the ranges 0%, 1% – 24%, 
25% – 49%, 50% – 74%, and 75% – 100% on the initial screening-
phase mammograms. The baseline density 0% corresponds to 
women with no dense breast tissue. We measured mammographic 
density in percent by measuring the percentage of breast area 
outlined on a cranial – caudal image that was dense for each breast. 
The mammographic density in percent was defi ned as the aver-
age of the two percentages of dense area for the two breasts. The 
natural logarithm of the relative risk is given as described by 
Chen et al. (unpublished results) by

 0.158( AGEFLB ) + 0.256( NBIOPS ) + 0.444( NUMREL ) 
  + 0.216( WEIGHT ) + 0.333( DENSITY ).  [1]   

 Thus, for a woman with an AGEFLB of 2, NBIOPS of 1, 
 NUMREL of 1, WEIGHT of 3, and DENSITY of 2, the natural log-
arithm of the relative risk is 10.3 = exp[(0.158 × 2) + (0.256 × 1) + 
(0.444 × 1) + (0.216 × 3) + (0.333 × 2)] times the hazard of a 
woman of the same age with all risk factors at the baseline level 
of zero. We denote coeffi cients in  Eq. 1  by the vector  β . Unre-
ported analyses showed that the effect of WEIGHT was very 
similar when model 1 was fi tted separately to women younger 
than 50 years old and to women 50 years old or older. We present 
factors ( Table 1 ), corresponding to terms in  Eq. 1 , that can be 
used to calculate relative risks easily.      

  Estimating the Baseline Age-Specifi c Breast Cancer 
Hazard Rate [ h  1 ( t )] and the Hazard of Death From 
Causes Other Than Breast Cancer [ h  2 ( t )] 

 We used mortality data from the National Center of Health 
Statistics  ( 10 )  from January 1, 1996, through December 31, 2000, 
to estimate  h 2 (t),  and we assumed that  h 2 (t)  was known without 
error and did not vary with the risk factors in our model. To 
 estimate  h 1 (t)  as in Gail et al.  ( 1 ) , we used the formula

   h  1 ( t ) = [1 −  AR ( t )] h  1 *( t ),   [2] 

where  h 1 *(t)  is the composite invasive breast cancer incidence 
rate available from the SEER program  ( 11 )  between January 1, 
1996, through December 31, 2000; AR( t ) is the population at-
tributable risk for women of age  t ; and  h 1  * (t)  is assumed to be 
known without error. The challenge was to estimate AR( t ). 

 Because AR( t ) changes very little with age, we assumed that 
AR( t ) was a constant for women younger than 50 years old and 
possibly another constant for women 50 years old or older. Let 
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the risk factors be described by vector  X  ′  = (X 1 , X  ′  2 ),  where  X 1  = 
( DENSITY )  and  X  ′  2  = ( AGEFLB ,  NBIOPS ,  NUMREL ,  WEIGHT ).  
Let  p ( x | I   t  ) be the population mass function for the risk factors  X  
given age is in interval  I   t  , where  I   t   corresponds to  t < 50  years or 
 t  ≥  50  years. In the analyses that follows, we use quantities such as 
 p ( x | I   t  ) and its estimate interchangeably. Letting  r (x) =  exp (  β   T x)  de-
note the relative risk at  X  =  x  compared with  X  = 0, we  computed 
  AR (I t )  from

 ARðItÞ ¼ 1� 1P
x

pðxjItÞrðxÞ :    [3]     

 Ideally, we would have survey data from the general popula-
tion on the distribution of  X , but such data on DENSITY are not 
available. We obtained data on the probability mass distribution 
of  X 2   in the general population from the NHIS. The NHIS is 
based on a complex weighted cluster sampling design  ( 12 ) . 
 Design-based consistent estimates and variance calculations 
must take this design into account. We used the program 
 SUDAAN  ( 13 )  for this purpose. We indexed the eight age inter-
vals (<45, 45 – 49, 50 – 54, 55 – 59, 60 – 64, 65 – 69, 70 – 74,  ≥ 75 
years) by  i  = 0, 1, 2,  …  7. From NHIS, we estimated the mass 

distributions  p(x 2 , t  =  i ),  from which conditional mass functions 
such as  p( t  =  i |x 2 ,I t )  and  p(x 2 |I t )  were computed. 

 To obtain the required conditional joint probability mass func-
tion,  p ( x | I   t  ), we assumed that the conditional distribution of  X  1  
for a given age interval  t  =  i  and  X  2  =  x  2  was the same in the 
BCDDP population as in the general population. From the data 
from control subjects with DENSITY measurements in each of 
the three subcohorts, we separately estimated  p(x 1 |x 2 ,t,I t ).  We 
 estimated  p(x 1 |x 2 ,t,I t ),  instead of directly estimating  p(x 1 |x 2 ,I t )  
 because age is strongly associated with DENSITY  ( 9 ) ; thus, in-
clusion of age may lead to more precise prediction of DENSITY. 
More importantly, the normal subcohort was sampled by fre-
quency matching on age in 5-year intervals. Its age distribution is 
not necessarily equal to that of the general population; therefore, 
naive estimation without stratifying on age would not be ex-
pected to yield consistent estimates of  p(x 1 |x 2 ,I t )  for the general 
population. To accommodate the large number of cells defi ned by 
 x 2     and    t,  we further modeled  p(x 1 |x 2 , t = i, t  ≥  50)  and  p(x 1 |x 2 ,t = i, 
t < 50)  by the same polytomous logistic regression model, which 
included trend effects on  t  and components of  x  2 . This assump-
tion of a common logistic model is justifi ed by the good fi t of the 
linear trend model in  t . The model we fi t was

 
pcðX1 ¼ cjx2; tÞ ¼ ec0cþccx2þdct 1þ

X4
k¼1

ec0kþckx2þdk t
" #�1

;

      
 c ¼ 1; 2; 3; 4;

 
pcðX1 ¼ 0jx2; tÞ ¼ 1þ

X4
k¼1

ec0kþckx2þdk t
" #�1

;

 
c ¼ 0:

 
[4]

In  Eq. 4 ,    γ   0c   is an intercept for DENSITY level  c , where  c  = 1, 2, 
3, or 4. For most of the women in the follow-up subcohorts, the 
values of  X  2  were not available when DENSITY was measured at 
the beginning of the screening phase. Instead, we used the values 
determined at the beginning of the follow-up phase in 1980 to 
predict  X  1  from  Eq. 4 . 

 The components of    γ   c   are the coeffi cients given separately 
in  Table 2  for the three subcohorts. Such a coeffi cient estimates 
the change in the natural logarithm of a relative probability 
from a unit increase in the corresponding covariate in  X  2 . 
The relative probability is the ratio of the probability that 
DENSITY =  c  divided by the probability that DENSITY = 0. 
For example, the coeffi cient  − 1.80 for WEIGHT in  Table 2  im-
plies that a unit increase in weight category is associated with 
a decrease in the ratio of the probability that DENSITY = 4 to 
the probability that DENSITY = 0 by a factor of exp( − 1.80) = 
0.165. The differing intercepts and coeffi cients for the various 
subcohorts imply, for example, that the ratio of the probability 
that DENSITY = 4 to the probability that DENSITY = 0 is 
greater in the subcohort of women given a biopsy examination 
in the screening phase and in the subcohort of women recom-
mended for biopsy examination but not given a  biopsy exami-
nation than in the normal subcohort.     

 For each subcohort, we estimated  p(x 1 |x 2 ,I t )  from

 pðx1jx2; ItÞ ¼
X8
i¼1

pðx1jx2; t ¼ i; ItÞpðt ¼ ijx2; ItÞ:   [5]  

To account for the fact that the distribution of DENSITY may 
differ in the three follow-up subcohorts ( Table 1 ) and that 
  “ normal ”  women were underrepresented in the follow-up study, 

  Table 1.       Factors for computing combined relative risk*  

Risk factor category Risk factor code Relative risk factor

A. Age at birth of fi rst live child, y AGEFLB
    <20 0 1.00
    20 – 24 1 1.17
    25 – 29 or nulliparous 2 1.37
     ≥ 30 3 1.61
B. No. of biopsy examinations NBIOPS
    0 0 1.00
    1 1 1.29
     ≥ 2 2 1.67
C. No. of fi rst-degree female 
  relatives with breast cancer

NUMREL

    0 0 1.00
    1 1 1.56
     ≥ 2 2 2.43
D. Weight, pounds WEIGHT
    <100 0 1.00
    100 – 125 1 1.24
    126 – 150 2 1.54
    151 – 175 3 1.91
    176 – 200 4 2.37
    >200 5 2.94
E. Mammographic density, % DENSITY
    0 0 1.00
    1 – 24 1 1.40
    25 – 49 2 1.95
    50 – 74 3 2.72
    75 – 100 4 3.79
F. Atypical hyperplasia (AH)
    No biopsies 1.00
 At least one biopsy and no 
  AH in any biopsy

0.93

    No AH found; hyperplasia 
  status unknown for  ≥ 1 biopsy

1.00

 AH found in at least one biopsy 1.82

  *  The combined relative risk is obtained by multiplying the relative risk fac-
tors corresponding to each of the categories A, B, C, D, E, and F. If we consider 
a woman with age at birth of fi rst live child (AGEFLB) = 2, number of previous 
benign breast biopsy examinations (NBIOPS) = 1, number of affected mother 
or sisters (NUMREL) = 1, weight (WEIGHT) = 3, and mammographic density 
(DENSITY) = 2 and assume that it is unknown whether atypical hyperplasia 
was present from the biopsy examination (factor  F ), then from this table, her 
 combined relative risk is 1.37 × 1.29 × 1.56 × 1.91 × 1.95 × 1.00 = 10.3.  
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we combined the subcohort-specifi c estimates by reweighting 
them to obtain

pðx1; x2jItÞ¼ pðx2jItÞ
 �

X
subcohorts

X
t

psubcohortðx1jx2; t; ItÞpðtjx2; ItÞ
" #

� pðsubcohortjItÞ; [6]

where  p( subcohort| I t )  refers to proportions of white women in 
age stratum  I t   in each of the three follow-up subcohorts in the 
entire BCDDP population at the end of the screening phase. 
These proportions were 0.099, 0.868, and 0.032, respectively, for 
the benign breast disease, normal, and recommended-for-biopsy 
subcohorts among those younger than 50 years; corresponding 
proportions for those 50 years old or older were 0.082, 0.885, and 
0.033. The joint mass distribution  p(x 1 ,x 2 |I t )  from  Eq. 6  was sub-
stituted into  Eq. 3  to estimate   AR (I t ),  which was substituted into 
 Eq. 2  to obtain  h 1 ( t ).   

  Estimating Absolute Risk and Its Variance 

 We calculated absolute risk of invasive breast cancer from 
age  a  to age  a  +  τ , where  τ  is the duration of the risk projection 
interval, in a woman with relative risk  r ( x ) from formula 5 of Gail 
et al.  ( 1 ) :

uðxÞ ¼
ðaþs
a

½1�ARðuÞ�rðxÞh1*ðuÞ

� exp �
ðu
a

f½1�ARðvÞ�rðxÞh1*ðvÞ þ h2ðvÞgdv
� �

du:

   

 
[7]      

To compute the absolute risk from  Eq. 7  and its variance, we as-
sumed that the hazards  h 1 *( t )  and  h 2 ( t )  were constant on 5-year in-
tervals as in  Eq. 6  in Gail et al.  ( 1 ) . To compute the variance of the 
estimate of    φ  ( x ),  we took into account random variation and co-
variation of estimates of the following quantities: the log relative 
risk parameters  β , the log odds ratio parameters    γ   = (  γ   0c ,  γ   c ,  δ   c ),  
where  c  = 1, 2, 3, or 4, to model  p  subcohort  (x 1 |x 2 ,t)  in each subcohort, 

 p(t|x 2 ,I t ),  and  p(x 2 |I t ).  Because values of  β  and  γ  were estimated by 
use of data from the BCDDP but values of  p(t|x 2 ,I t )  and  p(x 2 |I t )  
were from the NHIS, their estimates were independent. However, 
estimates of  β  and  γ  were correlated for two reasons. First, most of 
the control subjects from the screening phase were included in the 
normal subcohort, and a large fraction of them remained healthy 
and were, therefore, used to estimate  γ . Consequently, there was 
correlation between the contribution to the estimate of  β  from the 
screening phase and  γ  estimated from the women in the normal 
subcohort who remained free of disease. Second, there was a 
 correlation between the contribution to the estimate of  β  from each 
subcohort and the estimate of  γ  from the same cohort. Estimates 
of  p(t|x 2 ,I t )  and  p(x 2 |I t )  were correlated as well. Confi dence limits 
on the estimated absolute risk were calculated from the variance 
of the estimate of    φ  ( x )  by using the delta method to compute the 
variance of log[ φ ( x )/(1  −   φ ( x )], computing symmetric two-sided 
95% confi dence intervals on the logit-transformed risk, and back-
 transforming the result. The detailed variance calculations are 
 presented in the  Appendix . Numerical analysis that was based on 
formulas in the  Appendix  revealed that the largest contribution 
to the variance of (1  −  AR), and hence to the variance of absolute 
risk for a woman at the baseline level of risk factors, is from the 
variance of      β   ̂    .  Indeed this source contributes at least 20 times more 
than any other source to the variance of (1  −  AR). 

 To provide the reader with an approximate confi dence interval 
on    φ  ( x ),  we regressed the upper confi dence limits on    φ  ( x ),  which 
were calculated from the variance estimates in the  Appendix , on 
   φ  ( x )  and    φ   2 ( x )  (upper locus in  Fig. 2 ). A similar regression analy-
sis was obtained for the lower confi dence limits (lower locus in 
 Fig. 2 ). The points used in the regressions were chosen to cover a 
broad range of absolute risks as follows. For each of the 14 start-
ing ages of 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, and 
85 years, we considered projection intervals with a length of 
5, 10, 20, or 30 years, which were subject to the constraint that 
the starting age plus the duration of the projection interval was no 
greater than 90 years. This yielded 47 possible age intervals over 
which projections were to be made. For each such age interval, 
we computed the absolute risk for each of the 1080 possible risk 
factor combinations, resulting in 47 × 1080 = 50 760 pairs (upper 
confi dence limit, absolute risk) and 50 760 pairs (lower  confi de nce 

  Table 2.       Estimated coeffi cients in the polytomous regressions for the conditional distributions of DENSITY given age and other covariates for 
the three follow-up subcohorts *   

  Covariate in polytomous regression models

Cohort DENSITY level Intercept AGE NUMREL NBIOPS AGEFLB WEIGHT

Benign 1 1.08  − 0.12  − 0.01 0.77 0.52  − 0.26
2 2.32  − 0.33 0.17 1.15 0.63  − 0.75
3 2.69  − 0.63 0.36 1.66 0.93  − 1.21
4 2.10  − 0.85  − 0.05 1.88 1.07  − 1.80

Normal 1 2.23  − 0.08 0.26 0.00 0.20  − 0.47
2 3.00  − 0.19 0.11 0.36 0.38  − 0.93
3 3.92  − 0.49 0.37 0.64 0.60  − 1.47
4 2.42  − 0.60  − 0.06 0.88 0.95  − 1.87

Recom 1 3.26  − 0.09  − 0.81 0.30 0.04  − 0.49
2 4.68  − 0.32  − 0.95 0.82 0.37  − 1.06
3 5.69  − 0.56  − 0.57 0.95 0.53  − 1.56
4 4.62  − 0.65  − 1.26 1.03 0.48  − 1.75

  *  Covariates are coded as follows: age (AGE) was coded as 0, 1, 2, 3, 4, 5, 6, or 7 for a woman in age intervals <45, 45 – 49, 50 – 54, 55 – 59, 60 – 64, 65 – 69, 70 – 74, 
or  ≥ 75 years at entry into the follow-up phase in 1980. The number of affected mother or sisters (NUMREL), number of previous benign breast biopsy examinations 
(NBIOPS), age at birth of fi rst live child (AGEFLB), and weight (WEIGHT) were coded as in  Table 1 . Recom refers to the subcohort of women who were recom-
mended for biopsy examination during the screening phase but did not receive it. DENSITY refers to mammographic density.  
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limit, absolute risk). Thus, each of these quadratic  regressions 
was based on 50 760 points. The squared multiple correlations 
for the upper and lower confi dence intervals were 0.9991 and 
0.9989, respectively. Thus, the loci in  Fig. 2  provide good fi ts to 
the calculated confi dence limits and explain 99.9% of the varia-
tion in the confi dence limits in these 50 760 scenarios.       

  R ESULTS  

  Relative Risk 

 We tabulated the relative risk factors from  Eq. 1  (Chen J, 
 Ayyagari R, Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: 
unpublished results) to facilitate computation of the combined 
relative risk. As described previously  ( 1 , 10 ) , we included an 

 adjustment factor  F  for information on atypical hyperplasia 
( Table 1 ). As an example, we consider a woman with AGEFLB = 2, 
NBIOPS = 1, NUMREL = 1, WEIGHT = 3, and DENSITY = 2, 
and we assume it is unknown whether atypical hyperplasia was 
present on the biopsy (factor  F ). From  Table 1 , her combined rela-
tive risk is calculated as 1.37 × 1.29 × 1.56 × 1.91 × 1.95 × 1.00 = 
10.3. To estimate the absolute risk for such a woman, we need to 
combine this relative risk with information on the age interval over 
which risk is to be projected (see  Table 5 ), as described below.  

  Distribution of Covariates in the General Population, 
Attributable Risks, and Hazard Rates 

 The conditional distribution of DENSITY for age interval  i , 
NUMREL, NBIOPS, AGEFLB, and WEIGHT is given by  Eq. 4  
with estimated parameters in  Table 2  for each of the three BCDDP 
subcohorts. Density decreases with increasing WEIGHT and age 
interval  i , as indicated by the negative coeffi cients ( Table 2 ). As 
an example, consider a woman in the normal subcohort with 
AGEFLB = 1, NBIOPS = 0, and NUMREL = 1. If she is aged 51 
years (age group  i  = 3) and weighs 160 pounds (WEIGHT = 3), 
then from  Eq. 4  and data in  Table 2 , we calculate her chance of 
having DENSITY = 4 (i.e.,  ≥ 75% dense tissue) as exp[2.42  −  
(0.6 × 3)  −  (0.06 × 1) + (0.88 × 0) + (0.95 × 1)  −  (1.87 × 3)]/(1 + 
2.829 + 1.139 + 0.372 + 0.017) = 0.0031. If instead this woman 
were in age group  i  = 1 (i.e., age 45 – 49 years) and had WEIGHT = 0, 
the probability of having DENSITY = 4 would be 0.1083, nearly 
35 times as large. 

 Combining data on NUMREL, NBIOPS, AGEFLB, WEIGHT, 
and age with the conditional distributions in  Table 2  and averag-
ing as in  Eq. 6 , we estimated the joint distribution of all risk fac-
tors. The marginal distributions from this joint distribution are 
displayed for US women in  Table 3 . For comparison, we gave the 
marginal distribution among white control women with  DENSITY 
data in the BCDDP screening phase. Examining the results for 

  Table 3.       Estimates of the marginal distributions of covariates in percent in the general US population and in Breast Cancer Detection Demonstration Project 
(BCDDP) screening-phase control subjects  

  Covariate values * 

Age, y Target population Risk factor code 0 1 2 3 4 5

<50 US women DENSITY 10.5 28.1 25.6 29.5 6.2
NUMREL 94.5 5.3 0.2
NBIOPS 96.3 2.8 0.9
AGEFLB 18.0 22.5 51.0 8.5
WEIGHT 0.8 23.3 39.0 18.3 12.1 6.6

BCDDP screening-phase control subjects DENSITY 12.8 29.3 25.6 27.8 4.5
NUMREL 88.1 11.4 0.4
NBIOPS 87.0 10.2 2.6
AGEFLB 13.6 48.5 32.2 5.7
WEIGHT 1.1 30.1 44.2 16.0 6.3 2.2

 ≥ 50 US women DENSITY 21.1 43.2 24.7 9.6 1.3
NUMREL 87.7 10.9 1.4
NBIOPS 85.2 10.5 4.3
AGEFLB 22.1 39.9 30.8 7.2
WEIGHT 0.9 16.0 36.9 25.4 14.3 6.5

BCDDP screening-phase control subjects DENSITY 14.2 39.5 29.6 14.2 2.4
NUMREL 86.0 12.8 1.2
NBIOPS 81.3 13.4 5.3
AGEFLB 9.0 32.6 45.2 13.2
WEIGHT 1.4 27.1 43.9 18.4 6.8 2.4

  *  The numerical codes are as defi ned in  Table 1 . Higher codes correspond to increased breast cancer risk compared with lower codes. Rows sum to 100%. DENSITY 
refers to mammographic density; AGEFLB refers to age at birth of fi rst live child; NUMREL refers to number of affected mother or sisters; NBIOPS refers to number 
of previous benign breast biopsy examinations; WEIGHT refers to weight.  

  Fig. 2.     Upper and lower 95% confi dence limits for absolute risk from the new 
model with mammographic density.    
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US women, we note that 9.8% of women younger than 50 years 
old have no dense tissue, compared with an estimated 21.7% of 
older women. As anticipated, the proportion of women with af-
fected fi rst-degree relatives and the proportion of women with 
biopsies increased with age. The BCDDP screening-phase con-
trol subjects tended to have higher levels of these risk factors 
than women in the general US population. In particular, BCDDP 

screening-phase control subjects had higher proportions with af-
fected fi rst-degree relatives, with biopsy examinations, and with 
delayed age at birth of fi rst live child. BCDDP  screening-phase 
control subjects 50 years old or older also had higher proportions 
with dense breast tissue.     

 From  Eq. 3 , we estimated the attributable risk (i.e., AR) from 
the joint distribution of risk factors and the relative risk model 
( Eq. 1 ). Attributable risks of breast cancer associated with breast 
density, AGEFLB, NUMREL, NBIOPS, and WEIGHT were 
0.779 (95% CI = 0.733 to 0.819) and 0.747 (95% CI = 0.702 to 
0.788), respectively, for women younger than 50 years and 50 
years or older. The quantity (1  −  AR), which is needed in  Eq. 2 , 
was estimated to be 0.221 (95% CI = 0.181 to 0.267) among 
women younger than 50 years old and 0.253 (95% CI = 0.212 to 
0.298) among those 50 years old or older. The corresponding val-
ues of (1  −  AR) in Gail model 2  ( 2 )  were 0.579 and 0.579. Thus, 
the attributable risk in the new model that included DENSITY is 
considerably larger than the attributable risk in the model with 
standard risk factors only. This difference accounts for the fact 
that the baseline hazard rates  h  1 ( t ) are considerably lower in the 
new model ( Table 4 ) than in the Gail model  ( 2 ) .  Table 4  also 
displays the hazards of competing causes of mortality  h  2 ( t ).      

  Absolute Risk of Invasive Breast Cancer 

 From the piecewise constant hazards version of  Eq. 7  and the 
hazards in  Table 4 , we calculated the absolute risks of invasive 
breast cancer for various initial ages at counseling, follow-up in-
tervals, and initial relative risks ( Table 5 ). First, we assumed that 
the relative risks determined at the time of initial counseling re-
mained constant over the risk projection interval. For example, if 
we consider a 50-year-old woman with a relative risk of 3.0, from 

  Table 4.       Age-specifi c composite  h 1 *(t)  and baseline  h  1 ( t ) invasive breast cancer 
incidence rates and competing mortality rates  h  2 ( t ) (×10  − 5 ) for the Gail model 2 
in the National Cancer Institute risk disk and for the new model  

  Gail model 2 *   New model  †  

Age, y  h 1  * (t)  h  1 ( t )  h  2 ( t )  h 1  * (t)  h  1 ( t )  h  2 ( t )

20 – 24 1.0 0.6 49.3 1.1 0.3 42.3
25 – 29 7.6 4.4 53.1 7.6 1.7 47.0
30 – 34 26.6 15.4 62.5 25.2 5.6 62.9
35 – 39 66.1 38.3 82.5 62.5 13.8 90.7
40 – 44 126.5 73.2 130.7 124.3 27.5 131.3
45 – 49 186.6 108.0 218.1 204.7 45.2 192.4
50 – 54 221.1 128.0 365.5 278.1 70.2 311.2
55 – 59 272.1 157.5 585.2 353.0 89.2 522.4
60 – 64 334.8 193.8 943.9 408.1 103.1 873.8
65 – 69 392.3 227.1 1502.8 463.1 117.2 1389.4
70 – 74 417.8 241.8 2383.9 509.2 128.8 2213.4
75 – 79 443.9 256.9 3883.2 528.5 133.7 3565.6
80 – 84 442.1 255.9 6682.8 500.5 126.6 6081.2
 ≥ 85 410.9 237.8 14 490.8 420.1 106.3 14 426.0

  *  The Surveillance, Epidemiology, and End Results (SEER) rates  h 1 *(t)  were for 
white women from January 1, 1983, through December 31, 1987. The compet-
ing mortality rates  h  2 ( t ) were from the National Center for Health Statistics from 
January 1, 1985, through December 31, 1987.  

   †   The SEER rates  h 1 *(t)  were for white women from January 1, 1996, through 
December 31, 2000. The competing mortality rates  h  2 ( t ) were from the National 
Center for Health Statistics from January 1, 1996, through December 31, 2000.  

  Table 5.       Projected absolute risks in percent for various initial relative risks (RRs), initial ages, and ages at the end of the projection interval  

  Absolute risk in percent

Starting age, y Ending age, y RR = 1.0 RR = 2.0 RR = 3.0 RR = 5.0 RR = 10.0 RR = 20.0 RR = 30.0

20 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.1 0.2 0.3
40 0.1 0.2 0.3 0.5 1.1 2.1 3.1
50 0.5 0.9 1.4 2.3 4.5 8.8 12.9
90 3.6 7.1 10.4 16.6 30.1 50.3 63.9

30 35 0.0 0.1 0.1 0.1 0.3 0.6 0.8
40 0.1 0.2 0.3 0.5 1.0 1.9 2.9
50 0.5 0.9 1.4 2.2 4.4 8.7 12.7
60 1.2 2.4 3.6 5.9 11.4 21.6 30.5
90 3.6 7.1 10.4 16.6 30.2 50.4 64.1

40 45 0.1 0.3 0.4 0.7 1.4 2.7 4.0
50 0.4 0.7 1.1 1.8 3.5 7.0 10.2
60 1.1 2.2 3.3 5.5 10.7 20.2 28.7
70 2.1 4.1 6.1 10.0 19.0 34.3 46.5
90 3.5 6.9 10.2 16.4 29.8 49.9 63.5

50 55 0.3 0.7 1.0 1.7 3.4 6.7 9.9
60 0.8 1.6 2.3 3.8 7.5 14.5 20.9
70 1.8 3.5 5.2 8.5 16.3 29.8 41.1
80 2.7 5.4 8.0 12.9 24.0 41.8 55.1
90 3.2 6.4 9.4 15.1 27.6 46.9 60.4

60 65 0.5 1.0 1.5 2.5 4.9 9.6 14.0
70 1.0 2.1 3.1 5.1 9.9 18.8 26.8
80 2.1 4.1 6.0 9.8 18.6 33.5 45.4
90 2.6 5.1 7.5 12.2 22.7 39.6 52.3

70 75 0.6 1.2 1.8 3.0 5.9 11.4 16.6
80 1.1 2.3 3.4 5.6 10.9 20.5 28.9
90 1.8 3.5 5.2 8.4 16.0 29.1 39.8
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 Table 5 , her absolute risks to ages 55, 80, and 90 years are, 
 respectively, 0.01, 0.08, and 0.094 (or 1%, 8%, and 9.4%).     

 As a further illustration, consider a 50-year-old white woman 
with AGEFLB = 0, NBIOPS = 1, NUMREL = 1, WEIGHT = 2, 
and DENSITY = 2. If we assume that it is not known whether 
atypical hyperplasia was found in her breast biopsy examination, 
then from  Table 1 , we estimate her relative risk as 1.00 × 1.29 × 
1.56 × 1.54 × 1.95 × 1.00 = 6.04. To estimate her absolute risk 
over 10 years from  Table 5 , we interpolated between the entries 
for relative risks of 5 and 10. The resulting estimate is 3.8 + 
[1/(10  −  5)](7.5  −  3.8)(6.04  −  5) = 3.8 0.77 = 4.57%. 

 The 95% confi dence interval for such a projection can 
be approximated from  Fig. 2 . The actual loci are   − 0.0006 + 
1.1649  φ  (x)  −  0.0701  φ   2 (x)  for the upper locus and  0.0004 + 
0.8622  φ  (x) + 0.0157  φ   2 (x)  for the lower locus. By substituting 
   φ  (x) = 0.0457,  we obtain a 95% confi dence interval of 0.040 to 
0.052 for the absolute risk of 0.0457 in the previous example, in 
agreement with  Fig. 2 . The widths of the confi dence intervals 
increase with increasing absolute risk ( Fig. 2 ). 

 A Gauss program  ( 14 )  has been developed that computes the 
estimates of absolute risk and corresponding confi dence inter-
vals exactly for any combination of risk factors and age interval 
over which risk is to be projected. Using this program, we found 
for the previous example that the relative risk was 6.03 and the 
exact absolute risk estimate was 0.046 (estimated 95% CI = 
0.041 to 0.052). These exact calculations agreed well with the 
approximate values obtained by interpolation in  Table 5  and 
from  Fig. 2 .  

  Comparison Between the New Model With 
Mammographic Density and Gail Model 2 

 We compared 5-year absolute risk estimates from the new 
model with those from Gail model 2, which is used in the NCI’s 
Breast Cancer Risk Assessment Tool ( http://www.cancer.gov/
bcrisktool/ ), for the white control women with complete data on 
NUMREL, NBIOPS, AGEFLB, WEIGHT, and DENSITY in the 
screening phase of BCDDP. Data from 270 women who were 
selected from the 1744 control subjects with complete data are 
shown in  Fig. 3 . There were 270 unique relative risks among 
these 1744 control subjects, and one woman was randomly se-
lected from each of the sets of women having these 270 unique 
relative risks. The equiangular line, on which the ordinate equals 
the abscissa, is presented in  Fig. 3  to divide projections from the 
new model that exceed the projections from Gail model 2 (which 
are above the line) from those projections from the new model 
that are less than the projections from Gail model 2 (which are 
below the line). The new model tends to have higher projections 
than Gail model 2 when the projections from the new model are 
more than 0.01 and lower projections than Gail model 2 when 
projections are less than 0.01. Among the 444 women with pro-
jected 5-year risk of less than 0.01 according to the new model, 
the projections from the new model were lower than those from 
Gail model 2 in 285 (64.2%). Among the remaining 1300 women 
with projected risks of at least 0.01, the projections from the new 
model were lower than those from Gail model 2 in only 390 
(30.0%). Similar patterns were observed in strata defi ned by age 
groups (unreported analyses).     

 To understand discrepancies between the new model and Gail 
model 2, one must consider the two relative risk functions and 

the fact that the baseline hazard  h 1 (t)  is lower in the new model 
than in Gail model 2 ( Table 4 ). An inspection of the discrepancies 
between the new model and Gail model 2 indicated that the for-
mer tended to have higher risk projections for women in the 
higher categories of DENSITY and WEIGHT, as might be ex-
pected, because these factors are not present in Gail model 2. For 
example, the 5-year estimated risks for a 68-year-old woman 
with NBIOPS = 0, AGEMEN = 1, AGEFLB = 2, NULREL = 0, 
WEIGHT = 2, and DENSITY = 4 were 2.3% and 4.6%, respec-
tively, for Gail model 2 and the new model; the corresponding 
combined relative risks were 1.70 and 7.98. The relative risk pa-
rameters for the standard risk factors in Gail model 2 differ from 
those in the new model, but direct comparisons are complicated 
because Gail model 2 includes interactions between NBIOBS 
and an indicator for an age of at least 50 years and between 
NUMREL and AGEFLB. Apart from the previous comments on 
DENSITY and WEIGHT and on high versus low estimated risks, 
we could not identify general classes of women for whom the 
new model gave predictably different absolute risk estimates 
from Gail model 2.   

  D ISCUSSION  

 To estimate absolute risk, we combined our previously de-
veloped relative risk model (Chen J, Ayyagari R, Chatterjee N, 
Pee DY, Schairer C, Byrne C, et al.: unpublished results), which 
includes mammographic density, with information on the dis-
tribution of risk factors from the NHIS and BCDDP studies, 
with SEER invasive breast cancer rates, and with national mor-
tality hazard rates. We showed how to obtain an estimate of 
relative risk ( Table 1 ) and use this relative risk to fi nd the abso-
lute risk estimate ( Table 5 ). Variance calculations assume that 
SEER composite invasive breast cancer incidence rates and na-
tional mortality rates are known without error. However, these 

  Fig. 3.     Projected 5-year absolute risk of breast cancer from the new model 
with mammographic density (ordinate) plotted against the risk calculated with 
the National Cancer Institute’s Breast Cancer Risk Tool ( http://www.cancer.
gov/bcrisktool/   ) (Gail Model 2). The data are from 270 screening-phase control 
subjects. There were 270 unique relative risks among the 1744 screening-phase 
control women, and one woman was randomly selected from each of the sets of   
women having these 270 unique relative risks. The  solid line  is an equiangular 
line, for which the value plotted on the ordinate equals the value plotted on the 
abscissa.    

http://www.cancer.gov/bcrisktool/
http://www.cancer.gov/bcrisktool/
http://www.cancer.gov/bcrisktool/
http://www.cancer.gov/bcrisktool/
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calculations allow for random variation in the relative risk esti-
mation, which is complicated by the patterns of missing data 
(Chen J, Ayyagari R, Chatterjee N, Pee DY, Schairer C, Byrne C, 
et al.: unpublished results); for the complex sampling in NHIS 
to estimate the joint distribution of age, AGEFLB, NBIOPS, 
NUMREL, and WEIGHT; and for estimation of the conditional 
distribution of DENSITY in the BCDDP subcohorts, given 
other risk factors ( Table 2 ). These complex variance calcula-
tions are described in the  Appendix . Approximate confi dence 
intervals on absolute risk projections can be obtained from 
 Fig. 2 , and a Gauss program is available to compute the confi -
dence intervals analytically. 

 The relative risk model used in this study was obtained by 
combining data from the BCDDP screening phase with data from 
the three follow-up subcohorts, even though there was evidence 
of heterogeneity of relative risk estimates between the screening 
phase and the follow-up phase (Chen J, Ayyagari R, Chatterjee N, 
Pee DY, Schairer C, Byrne C, et al.: unpublished results). We 
used this strategy in the expectation that the resulting absolute 
risk projections would work reasonably well over both short-
term and longer term intervals. Independent validation studies 
are needed to test this strategy. The calculations in the paper also 
assume that a woman’s relative risk remains constant over the 
risk projection interval. If one anticipates that a factor such as 
NUMREL, DENSITY, or WEIGHT will change over time, one 
could adapt  Eq. 7  by allowing the relative risk to vary with 
risk factors  X ( t ) that change with age  t . For example, if risk fac-
tors remain constant, a 40-year-old woman with NBIOPS = 1, 
AGEFLB = 2, NULREL = 0, WEIGHT = 1, and DENSITY = 4 
will have an absolute risk of 16.1% to age 70 years. If, instead, 
her DENSITY decreases to 3 and her WEIGHT increases to 2 at 
age 55 years, then her projected risk between ages 40 and 70 
years would be 15.0%. 

 We found large attributable risks of 0.779 (95% CI = 0.733 to 
0.819) for women who were younger than 50 years and of 0.747 
(95% CI = 0.702 to 0.788) for women who were 50 years old 
or older. These attributable risks are larger than the values near 
0.48 found for the Gail model  ( 1 ) . The larger attributable risks 
with the new model refl ect the high prevalence of women with 
DENSITY of more than 0 ( Table 3 ) and the large relative risks 
associated with DENSITY ( Table 1 ), which are factors that have 
been noted previously  ( 6 ) . 

 Independent validation studies are needed to check the rela-
tive risks as well as the calibration  ( 2 , 5 )  and discriminatory 
power  ( 5 )  of the absolute risk model. A model is well calibrated 
if the observed numbers of breast cancer diagnoses in various 
subgroups of the population agree well with expected numbers 
based on the model  ( 15 ) . We have indirect evidence that the 
new model is well calibrated. Previous studies have shown that 
Gail model 2 is well calibrated  ( 2 , 5 ) . Even though predictions 
from Gail model 2 and the new model can differ appreciably 
( Fig. 3 ), the average predicted 5-year risk from the two models 
is quite similar for women in the following age intervals: 
younger than 45, 46 – 55, 56 – 65, and older than 65 years. When 
we analyzed data from the 1744 white control subject women in 
the screening phase with complete data on the standard risk fac-
tors DENSITY and WEIGHT, we found that the average pre-
dicted 5-year risks in these intervals were 0.8%, 1.5%, 2.2%, 
and 1.9%, respectively, for the new model and 0.7%, 1.5%, 
2.1%, and 1.9% for Gail model 2. These data suggest that the 
new model gives average predictions close to those of Gail 

model 2 and is, therefore, well calibrated. Independent cohort 
data are needed to examine calibration in subgroups defi ned by 
factors such as age and levels of DENSITY and to check the 
model’s applicability to nonwhite women. Ursin et al.  ( 16 )  
found similar relative risks for breast cancer associated with 
mammographic density among white, Asian American, and 
 African American women. 

 The most widely used statistic to assess  “ discriminatory 
power ”  is the concordance statistic  ( 5 , 15 )  or area under the 
 receiver-operating curve. Unlike tests of calibration, which re-
quire cohort data, the concordance statistic can be estimated 
from a sample of women with breast cancer and from a sample 
of control subjects. By analyzing data from the case patients 
and control subjects from the screening phase of the BCDDP, 
Chen et al. (unpublished results) showed that the new model 
had greater age-specifi c concordance than Gail model 2. For 
example, for women aged 60 – 64 years, the concordance of 
Gail model 2 was estimated as 0.602, compared with 0.664 for 
the new model. The difference 0.063 had standard error 0.026, 
indicating a statistically signifi cant increase in concordance 
(two-sided  P  = .015). Statistically signifi cant increases in con-
cordance were found for the age intervals of 45 – 49, 50 – 54, 
60 – 64, and 70 years old or older, but increases were present in 
all seven age groups and ranged from 0.009 to 0.094. The un-
weighted average age- specifi c concordance for Gail model 2 
was 0.596, compared with 0.643 for the new model. Thus, add-
ing mammographic density improves the discriminatory power 
modestly compared to Gail model 2. Whether this improve-
ment is suffi cient to justify the additional expense of obtaining 
data on mammographic density may depend on the particular 
application of the risk projection model  ( 15 ) . In any case, it 
would be useful to have additional independent data to com-
pare the concordance statistic of the new model with that of 
Gail model 2. 

 Tice et al.  ( 17 )  studied whether mammographic density, mea-
sured by the categories of the Radiology Breast Imaging Report-
ing and Data System (BI-RADS) of the American College of 
Radiology, could add to the discriminatory power of the Gail 
model. They found that BI-RADS was an independent predictor 
of risk but that it barely increased the concordance above levels 
provided by the Gail model alone. For example, for women with 
complete information on Gail model covariates, the concordance 
was 0.70 from the Gail model alone and 0.71 with the addition of 
BI-RADS. One possible explanation for the smaller increase in 
concordance than found by Chen et al. (unpublished results) is 
that BI-RADS may be less informative than DENSITY. The dif-
ference may also be related to the fact that Tice et al. did not 
stratify their concordance calculations on age. Analysis of data 
from women of all ages results in higher concordance for the 
Gail model; this result may make it harder to detect the incre-
mental value of BI-RADS. 

 Several limitations of our data and approach should be noted. 
As mentioned previously, to obtain relative risk estimates that 
might apply over shorter or longer time intervals, we combined 
data from the screening phase with data from the follow-up 
phase, even though estimates of relative risks for DENSITY 
and NUMREL were larger in the screening phase. Because 
 DENSITY data were not available in NHIS, we needed to as-
sume that the conditional distribution of DENSITY given age, 
AGEFLB, NBIOPS, NUMREL, and WEIGHT was the same 
in NHIS as in BCDDP to estimate the joint distribution of all 
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these variables in the general U.S. population. Because medical 
practices and diagnostic procedures have changed over time, 
relative risks that are based on BCDDP data from 1973 to 1995 
may differ somewhat from current relative risks. In particular, 
our data on DENSITY were based on mammograms taken from 
1973 through 1975 and were later assessed by a single evalua-
tor, who outlined the dense areas  ( 9 ) . Measurements that are 
based on newer technologies or that are made by multiple eval-
uators might yield different relative risks for DENSITY, al-
though correlations among readings of the same fi lms made by 
the evaluator in this study at different times were similar to 
 correlations among different evaluators reported in other stud-
ies  ( 9 )  (Chen J, Ayyagari R, Chatterjee N, Pee DY, Schairer C, 
 Byrne C, et al.: unpublished results). For these reasons, it is 
important that independent validation data be obtained to assess 
the relative risk features and absolute risk pro jections from this 
model. 

 A Gauss program is available to researchers from the corre-
sponding author for further testing of this model. If the new 
model is shown to be valid in independent evaluations, a more 
convenient program could be made available for counseling and 
other applications.  

  A PPENDIX  

 This  appendix  describes the statistical methods needed to compute 
confi dence intervals on our estimates of absolute risk. This material 
documents our methods, and the approach may be useful to others who 
are developing risk models based on various data sources. The practi-
tioner interested in using  Tables 1  and  5  to project risk and  Fig. 2  to ap-
proximate the confi dence intervals can skip this  Appendix . 

 We obtained the asymptotic formulas for calculating the variance of 
the absolute risk estimates by applying the delta method  ( 18 ) . For den-
sity levels  c  = 1, 2, 3, or 4 in  Eq. 4 , let    γ    normal   = (  γ   0c   normal  ,  γ   c   normal  ,  δ   c   normal  ),  
   γ    benign   = (  γ   0c   benign  ,  γ   c   benign  ,  δ   c   benign  ),     γ    recom   = (  γ   0c   recom  ,  γ   c   recom  ,  δ   c   recom  ),  and    γ   = 
(  γ    normal  ,  γ    benign  ,  γ    recom  ).  Further, let  p 1 l 2c  = p   γ   (x 1  = c|x 2 , t, t < 50),   p l  i2  = p(t = 
i|x 2 ,t < 50),   p 2  

l  = p(x 2 |t < 50),   p h  12c  = p   γ   (x 1  = c|x 2 ,t,t  ≥  50),   p h  i2  = p(t = i|x 2 ,
t  ≥  50),   p l  = (p l  i2 ,p 2  

l ),  and  p h   = (p h  i2 ,p 2  h ).  The projected absolute risk  φ  is a 
function of  (p l ,p h ),   β , and  γ . That is,    φ�   =   φ      {ARt<50 [ pl, γ, r(β)], ARt≥50 
[ pl, γ, r(β)],r(β)}.  Taylor series expansion of  φ  around the true values of 
these parameters yields

  ̂u�u � du
dARt<50

 dARt<50

dpl
ðp̂l � plÞ

 þ du
dARt�50

dARt�50

dph
ðp̂h � phÞ

þ
X

three cohorts

du
dARt<50

X
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dpl12c

dpl12c
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� �"
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X
c;t�50
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dph12c
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� �#
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db
þ du
dARt�50

dARt�50

db
þ du

db

� �
ðb̂� bÞ:

½A1�    

 The variance of the absolute risk estimate can be obtained from  Eq. A1  
in terms of the variances and covariances of the parameter estimates, 
which are identifi ed by hats over the parameters and by substituting 
 estimates of terms such as   d   φ  / dAR  t<50 .  

 To use  Eq. A1  in this way, we calculated the following quantities in 
 Eq. A1 .
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 and 

dpl12c
dccohort

¼ x2
t

� �
½Iðc > 0Þ � pl12c�pl12c; c ¼ 0; 1; 2; 3; 4:

The formulas for   dAR  t ≥ 50 / d p h   are exactly the same as for   dAR  t<50 / d p l   
except for suitable changes of superscripts from  l  to  h  that index proba-
bilities conditional on  t  < 50 and  t   ≥  50, respectively. 

 We obtained the variance of      φ   ̂      by computing the variance of the right-
hand side of  Eq. A1 . We noted that   cov (  p  ̂    l ,    γ   ̂    ) =  cov (  p  ̂    h ,    γ   ̂    ) =  cov (  p  ̂    l ,   p  ̂     h ) = 
 cov (    β   ̂    ,   p  ̂     h ) =  cov (    β   ̂    ,   p  ̂     l ) = 0  because different data sources were used for 
each estimate. To obtain   cov (   p  ̂     l  i2  ,      p  ̂    2  

l    ),  we estimated the covariance matrix 
 C  for    p  ̂   (t,x 2 |t < 50)  and    p  ̂    2  

l   with the software program SUDAAN  ( 13 ) , 
which appropriately takes into account the cluster sampling scheme for 
the NHIS. Then we obtained the variance – covariance matrix between 
   p  ̂     l  i2   and    p  ̂    2  

l   by applying the delta method. The variance – covariance matrix 
between    p  ̂     h  i2   and    p  ̂    2  

h   was obtained in a similar fashion. 
 We calculated the covariance between      γ   ̂      and      β   ̂    ,  which were both es-

timated from the BCDDP data. Recall that      β   ̂      was obtained as the linear 
combination of relative risk estimates from the screening phase and the 
three follow-up subcohorts,      β   ̂     =   w  ̂    s     β   ̂     s  +   w  ̂    normal      β   ̂     normal   +   w  ̂    benign      β   ̂     benign   + 
  w  ̂    recom      β   ̂     recom  ,  in which  w  denotes ma    trix weights and the subscript  s  
indexes the  screening phase. We calculated   cov (    β   ̂      normal  ,    γ   ̂      normal  ),  
  cov (    β   ̂      benign  ,    γ   ̂      benign  ),  and   cov  (    β   ̂      recom  ,     γ   ̂      recom  )  as described below. We 
 included 3093 of the 3146 screening-phase control subjects in the 
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 follow-up study, for   3017 (97.5%) in the normal subcohort, 48 (1.6%) 
in the benign subcohort, and 28 (0.9%) in the biopsy-recommended 
subcohort. Thus, we treated   cov (    β   ̂     s ,     γ   ̂      benign  )  and   cov (    β   ̂     s ,     γ   ̂      recom  )    as zero 
and calculated   cov (    β   ̂     s ,     γ   ̂      normal  )  as described below. 

 We present the method for calculating   cov (    β   ̂      normal  ,     γ   ̂      normal  )  as an ex-
ample. Let  n  normal  be the total number of subjects in the normal cohort, 
 λ  be the baseline breast cancer hazard parameters in the piecewise expo-
nential model as described previously (Chen J, Ayyagari R, Chatterjee 
N, Pee DY, Schairer C, Byrne C, et al.: unpublished results), and  φ  be the 
parameters in the polytomous regression model for the distribution of 
DENSITY conditioned on age and weight used in the EM algorithm 
(Chen J, Ayyagari R, Chatterjee N, Pee DY, Schairer C, Byrne C, et al.: 
unpublished results). Let  U   β    

j ,U   λ    
j ,U   φ    

j   be the score functions from the 
observed data log likelihood for the normal subcohort for  β ,  λ , and  
φ , respectively. The vector of scores is given by  Eq. 7  in Chen et al. 
(unpublished results). We then wrote the infl uence function for  (    β   ̂      normal  ,     
λ   ̂      normal  ,     φ   ̂      normal  )  as
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where  U   β
   j   
β    =  d U  β

  j   / d   β  ,  U  β
  j        λ      =  d U  β

  j / d   λ  ,  and so on. In this expression, the 
summations are over all members of the normal subcohort. The quantity 
   U   ̃        β    

j   is the vector of infl uences of individual  j  on the components of      β   ̂    ,  
and    U   ̃        λ

    j   and    U   ̃        φ
    j   are corresponding infl uence vectors for      λ   ̂      and      φ   ̂    .  The co-

variance matrix of  (    β   ̂     T ,     λ   ̂     T ,     φ   ̂     T ) T   can be estimated from the infl uences. 
For example,   Var (    β   ̂      normal  )  can be esti  mated as   ∑ (   U   ̃        β    

j  )(   U   ̃        φ
    j  ) T   and   Cov (    β   ̂      normal  ,     

φ   ̂      normal  )  can be estimated as   ∑ (  U   ̃        β    
j )(   U   ̃        φ

    j  ) T ,  where the summations are 
over all  n  normal  members of the subcohort. If  m  normal    is the number of 
noncase patients in the normal subcohort who have DENSITY data, then 
the infl uence function for      γ   ̂      normal    can be obtained similarly:

                
ĉnormal � cnormal ¼

1

mnormal

Xmnormal

j¼1

Uj
cc

" #�1

 
� 1

mnormal

Xmnormal

j¼1

Uj
c
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As before,   Var (    γ   ̂      normal  )  can be estimated by   ∑ (  U   ̃        γ    
j )(  U   ̃        γ    

j ) T   and 
    cov (    β   ̂      normal  ,     γ   ̂      normal  )  can be estimated from   ∑ (  U   ̃        β    

j )(  U   ̃        γ    
j ) T ,  where now the 

summations are over the  m  normal    members of the normal subcohort who 
infl uence      γ   ̂      normal    — namely, the noncase patients in the normal subcohort 
who have DENSITY data. 

 To calculate   cov (    β   ̂     s ,    γ   ̂      normal  ),  we noted that among the  screening-phase 
control subjects who were included in the normal follow-up subcohort, 
4.9% developed breast cancer and 95.1% remained healthy. Only the 
latter were used for the calculation of      γ   ̂      normal  .  Let  n  overlap    denote the 
number of individuals with nonzero infl uence on both      β   ̂     s   and      γ   ̂      normal  .  
From the individual infl uences for      β   ̂     s   — namely    U   ̃       j    β   s    obtained as de-
scribed by Chen et al. (unpublished results), one can estimate 
  cov (    β   ̂     s ,    γ   ̂      normal  )  as   ∑ (    U   ̃       j    β   s      )(   U   ̃       

j    γ      ) T ,  where the sum is over the  n  overlap    indi-
viduals who infl uence both      β   ̂     s   and      γ   ̂      normal  .  

 We derived the formula for the variance of the attributable risk simi-
larly, as AR It  = AR It  [ p l  , γcohort,  r (β)].                   The Taylor series ex pansion is

AR̂ðItÞ �ARðItÞ ¼ dARIt

dpl
ðp̂l � plÞ þ dARIt

db
ðb̂� bÞ

þ
X
cohort

dARIt

dccohort
ðĉcohort � ccohortÞ:

The variance can be obtained in a similar fashion as for the predicted 
risk. In fact, terms required to compute the absolute risk can be used for 
the calculation of the attributable risk.    
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